Talkographics: Learning Audience Demographics and Interests from Publicly Available User Generated Content to Make TV Show and Brand Recommendations

نویسندگان

  • Shawndra Hill
  • Adrian Benton
چکیده

This paper presents a novel recommendation system (RS) based on the user-generated content (UGC) contributed by TV viewers via Twitter, in order to demonstrate the value UGC presents for firms. In aggregate these millions of TV viewers’ tweets enable us to calculate the affinity between TV shows and explain the similarity between TV show audiences based on their demographics, geographic location and interests. We present 1) a new methodology for collecting data from social media with which to generate and test affinity networks; and 2) a new privacy-friendly UGC-based RS relying on all publicly-available text from viewers, rather than only preselected TV related keywords. This data collection method is more flexible and generalizable than previous approaches and allows for real-world validation. We coin the term talkographics to refer to descriptions of any product’s audience revealed by the words used in their Twitter messages, and show that Twitter text can represent complex, nuanced combinations of the audiences features. To demonstrate that our RS is generalizable, we apply this approach to other product domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Talkographics: Learning Audience Demographics and Interests from Text to Make TV Show Recommendations

This paper presents a novel recommendation system (RS) based on the user-generated content (UGC) contributed by TV viewers via Twitter, in order to demonstrate the value UGC presents for firms. In aggregate these TV viewers’ tweets enable us to calculate the affinity between TV shows and explain the similarity between TV show audiences. We present 1) a new methodology for collecting data from s...

متن کامل

Increasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms

Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...

متن کامل

Discovery of Topical Authorities in Instagram

Instagram has more than 400 million monthly active accounts who share more than 80 million pictures and videos daily. This large volume of user-generated content is the application’s notable strength, but also makes the problem of finding the authoritative users for a given topic challenging. Discovering topical authorities can be useful for providing relevant recommendations to the users. In a...

متن کامل

Factors Related to Satisfaction Acquired from TV Programs about the Islamic Revolution

Since the audience satisfaction of programs related to Islamic revolution has an important role in their decision to watch these programs that consequently exerts impact on how the audience learn about the phenomenon of Islamic revolution, therefore, through deeper understanding of these factors and planning to increase audience satisfaction, the officials in charge of these programs may utiliz...

متن کامل

Providing a Cultural Model to Understand the Process of Attracting TV Audiences

Nowadays, despite the Internet, social networks are the main competitors of mass networks, and the number of their users is increasing day to day. Therefore, the purpose of this study is to provide a cultural model to understand the process of attracting TV audiences. This research is a practical research, and a descriptive-survey research in terms of data collection. The research orientation t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014